

Résumé Semaine 7

Procédés de fabrication par usinage

Dr. S. Soubielle

S. Soubielle

Résumé semaine 7

ME-101 / ME-106 — Construction Mécanique I

Procédés de fabrication par usinage (1/2)

- Principe et physique de la coupe
 - Procédé de fabrication par enlèvement de matière → copeau
 - Outil de coupe extrêmement résistant (cermet ou ARS)
 - Utilisation d'un liquide de coupe, la plupart du temps
- Types d'usinage et topologie de pièce
 - Tournage « pur »
 - → Pièces axisymétriques
 - Fraisage 3-axes « pur »
 - → Pièces prismatiques « simples »
 - Tournage + fraisage 3-axes
 (avec reprise de pièce) et/ou fraisage 5-axes ++

Procédés de fabrication par usinage (2/2)

· Paramètres de coupe

 $-V_c$ dépend de l'outil utilisé et du matériau à usiner

→ Pièce : aluminium + rapide qu'acier/fonte

→ Outil : cermet + rapide qu'ARS

 $-V_{\rm f}$, $a_{\rm p}$ → Impact qualité des surfaces

finition

ébauche

Types d'opération

- Terminologie spécifique en tournage et en fraisage
- Stries caractéristiques sur les surfaces usinées

♠ Limitations et design ♠

- Coin rentrant impossible à réaliser en usinage
- Géométrie → Toujours privilégier le volume min. de copeau

S. Soubielle 3

Résumé semaine 7

ME-101 / ME-106 - Construction Mécanique I

Quiz TurningPoint (me101)

États de surface

Définitions et notations, mesurage, influence du procédé de fabrication, rectification

Dr. S. Soubielle

S. Soubielle

États de surface

ME-101 / ME-106 — Construction Mécanique I

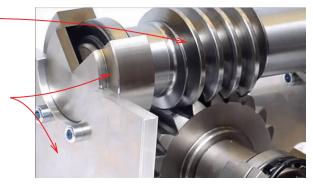
Dans ce cours, nous allons...

... Définir la notion d'état de surface

- ... Influence du procédé de fabrication
- ... Paramètres normalisés de l'état de surface
- ... Mesurage de l'état de surface

... Lister les valeurs atteignables d'état de surface

- ... Pour les principaux types de procédés
- ... Avec un focus sur la rectification mécanique


... Définir la manière de spécifier les états de surface sur un plan

- ... Etat de surface général / local
- ... Indications complémentaires

Etat de surface et fonction technique

Constat

- Pas besoin de la même qualité de surface partout
- Dépend des fonction techniques à satisfaire
 - Contact + mouvement relatif (roulement et/ou glissement)
 → Qualité « élevée » requise
 - Ø contact ou contact statique
 → Qualité « basse » ok

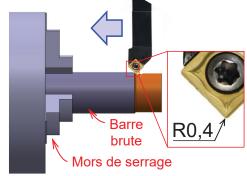
Quantification et contrôle sur une pièce réelle

- → Comment quantifier la qualité d'une surface ?
- → Comment contrôler la qualité d'une surface ?

S. Soubielle 3

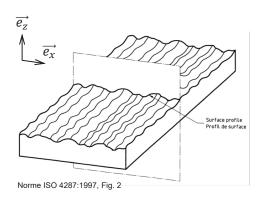
États de surface

ME-101 / ME-106 — Construction Mécanique I


Retour sur l'usinage

Exercice de mise en situation

L'outil de coupe utilisé pour réaliser l'opération de chariotage ci-contre a un rayon de pointe r = 0,4 mm.


- 1. Quelle est la hauteur des stries si l'avance par tour *f* = 0,3 mm ?
- 2. Quelle valeur de f doit-on imposer pour obtenir une hauteur de stries de 10 μ m?

Quantification de l'état de surface (1/3)

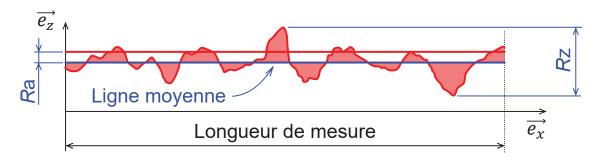
Profil de rugosité

 Mesure topographique des défauts de surface réels

Rugosimètre

- Scanne le profil de rugosité
- Calcule les paramètres normalisés d'état de surface

https://www.youtube.com/watch?v=s7rrlhEikg4


S. Soubielle 5

États de surface

ME-101 / ME-106 - Construction Mécanique I

Quantification de l'état de surface (2/3)

Paramètres normalisés

Écart moyen arithmétique Ra (« average roughness »)

- = Surface rouge / longueur de mesure
- → Caractérise la qualité de surface globale

Hauteur maximale du profil Rz

- → Caractérise l'amplitude max. de défaut (local)
- → Utile pour spécifier la qualité des surfaces avec contact « frottant »

Quantification de l'état de surface (3/3)

Classes de rugosité ISO

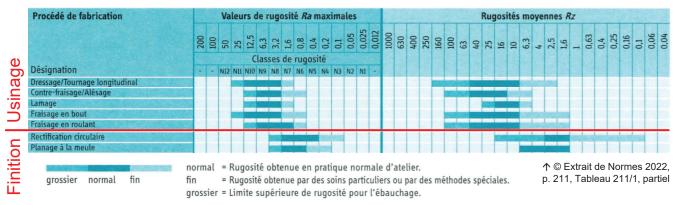
- Critère antérieur à Ra et Rz, encore souvent utilisé
- Notation : « N » suivi d'un nombre entre 1 et 12
- → Table de correspondance N vs. Ra

Rugosité Ra [µm] 0,025 0,05 0,1 0,2 3.2 6,3 12.5 50 0,4 8,0 1,6 Classe ISO [-] N1 N2 N3 N4 N₅ N₆ N7 **N8** N9 N10 N11 N12

Estimation de la rugosité ISO par « rugotest »

- Plaquette de référence
- Mesure estimative, par comparaison visuelle ou tactile (grattage à l'ongle)

Rugotest L.C.A. – C.E.A – modèle n°1


S. Soubielle 7

États de surface

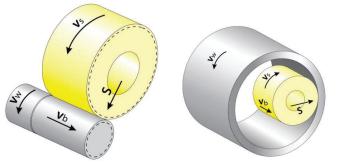
ME-101 / ME-106 - Construction Mécanique I

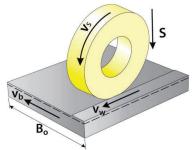
Rugosités et procédés de fabrication

Plages de rugosités Ra et Rz en usinage et en finition

Valeurs de référence en usinage

- Usinage normal \rightarrow (Ra 1,6) Ra 3,2 / (Rz 10) Rz 16
- Usinage fin \rightarrow (Ra 0,8) Ra 1,6 / (Rz 1.6) Rz 6,3


Rectification mécanique


Principe

- Opération de finition pour qualité élevée d'état de surface
- Abrasion de la surface au moyen d'une meule cylindrique

Rectification circulaire / cylindrique

Rectification plane

© Swiss Mechanic – Pièce en gris $(V_w >> V_b)$ / Meule en jaune $(V_s >> S)$

Valeurs optimales de rugosité

$$\rightarrow$$
 (Ra 0,1) – Ra 0,4 / (Rz 0,1) – Rz 2,5

S. Soubielle 9

États de surface

ME-101 / ME-106 - Construction Mécanique I

Notation normalisée sur le plan (1/2)

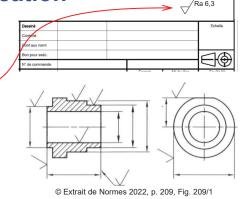
- Symboles pour l'indication des états de surface
 - Symbole de base... → √
 - Indication de la valeur de rugosité maximale exigée
 Par exemple « Ra 1,6 » → \(\sqrt{Ra 1,6} \)
 - Spécification avec / sans enlèvement de matière (optionnel)
 - La surface doit être obtenue par enlèvement de matière $ightarrow \sqrt{}$
 - La surface doit être obtenue sans enlèvement de matière → √
- Indication du procédé de fabrication (optionnel)

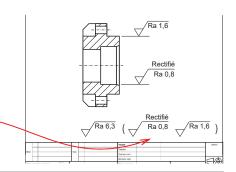
Ex. si l'état de surface doit être obtenu par rectification

rectifié

Notation normalisée sur le plan (2/2)

Indications sur le dessin de fabrication


État de surface « général »


Symbole placé à proximité du cartouche

Exemple: rugosité générale Ra 6,3 — avec enlèvement de matière

État de surface « local »

- Exigence spécifique à une surface
- Symbole placé sur une arête visible de la surface concernée, ou sur une ligne de rappel qui la prolonge.
- Rappelé à proximité du cartouche (noté entre parenthèses, après l'état de surface général)

S. Soubielle 11

États de surface

ME-101 / ME-106 - Construction Mécanique I

Références normatives principales

ISO 8015	Spécification géométrique des produits (GPS) — Principes fondamentaux — Concepts, principes et règle
ISO 21920-1	Spécification géométrique des produits (GPS) — État de surface: Méthode du profil — Partie 1: Indication des états de surface
ISO 21920-2	Spécification géométrique des produits (GPS) — État de surface: Méthode du profil — Partie 2: Termes, définitions et paramètres d'état de surface
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

Tolérancement dimensionnel l

Défaut dimensionnel, Tolérance dimensionnelle, Système de tolérances générales

Dr. S. Soubielle

S. Soubielle 1

Tolérancement dimensionnel I

ME-101 / ME-106 - Construction Mécanique I

Dans ce cours, nous allons...

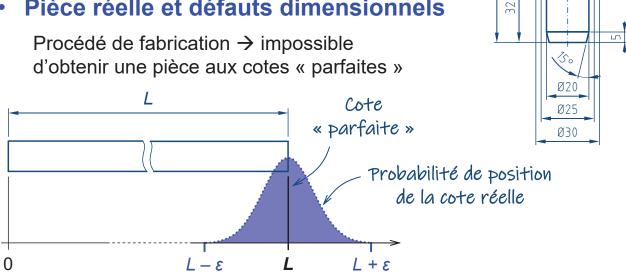
... Introduire la notion de défaut dimensionnel

- ... Écart par rapport à la cote « parfaite » et plage d'incertitude
- ... Origines / causes des écarts mesurés ?
- ... Concept de défaut maximum admissible
- ... Terminologie, notation, et tolérancement d'une pièce

... Définir les tolérances dimensionnelles générales

- ... Principe et notation
- ... À quel besoin cela répond-il ?
- ... Valeurs numériques des écarts dimensionnels maximum admissibles

56)


Ø10

Pièce réelle vs. pièce parfaite

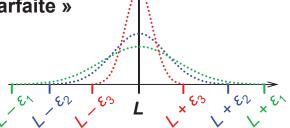
Cotation selon cours semaine 3

- → Cas idéal d'une pièce « parfaite »
- → Dimensions issues du modèle 3D

Pièce réelle et défauts dimensionnels

S. Soubielle 3

Tolérancement dimensionnel I


ME-101 / ME-106 - Construction Mécanique I

Amplitude du défaut dimensionnel

- Distribution de la probabilité
 - A priori centrée sur la cote « parfaite »

$$\rightarrow L - L_{\min} = L_{\max} - L = \varepsilon$$

- \rightarrow Plage d'incertitude = 2 × ε
- ε plus ou moins grand...
 - → Cote plus ou moins précise

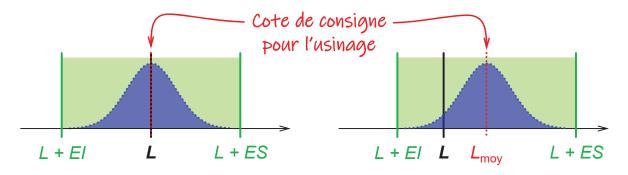
- De quoi dépend la largeur de la plage d'incertitude ?
 - Précision intrinsèque du procédé de fabrication

Par ex. sur machine d'usinage std : ± 50 µm / 100 mm et ± 5' d'angle

Valeur de la cote « parfaite » (si linéaire)

Par ex. : ± 0,1 plus facile à obtenir sur une cote de 100 mm que 1 m

- Autres → Paramètres d'usinage et niveau d'usure des outils
 - → Précision des outils de mesure / contrôle


Écarts limites et dimension admissible

• Pour chaque cote, on va spécifier...

- − L'écart limite inférieur admissible EI → $L_{min} = L + EI$
- L'écart limite supérieur admissible ES → $L_{max} = L + ES$

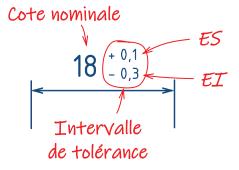
\rightarrow La cote réelle devra être comprise entre L_{\min} et L_{\max}

- Si EI = ES → L'usineur va viser la cote parfaite L pour l'usinage
- Si $EI \neq -ES$ → L'usineur va viser la cote moyenne $(L_{min} + L_{max})/2$

S. Soubielle 5

Tolérancement dimensionnel I

ME-101 / ME-106 - Construction Mécanique I


Terminologie et notation (1/3)

Dimension (taille) nominale

Dimension de référence sur le plan (= cas idéal)

• Ecart limite supérieur (ES) et écart limite inférieur (EI)

$$1^{\text{ère}}$$
 ligne = ES / $2^{\text{ème}}$ ligne = EI

Dimensions limites admissibles

- Limite supérieure adm. = dim. nominale + ES
- Limite inférieure adm. = dim. nominale + El

Intervalle de tolérance

= Combinaison de ES et de EI

Terminologie et notation (2/3)

- Unité de ES et El → Identique à celle de la cote nominale
- Positions de l'intervalle de tolérance

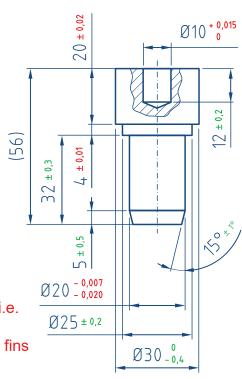
- Quelconque (
$$|ES| \neq |EI|$$
) $\rightarrow ES > 0$ et $EI < 0$ 18 $^{+ 0,1}_{- 0,3}$ $\rightarrow ES < 0$ 18 $^{- 0,006}_{- 0,017}$ $\rightarrow EI > 0$ 18 $^{+ 0,15}_{+ 0,12}$

- Centré sur la cote nominale (
$$|EI| = |ES|$$
) → 18 ± 0,05

$$- ES = 0 \rightarrow 18^{-0.030}$$

$$-$$
 EI = **0** \rightarrow 18 $^{+0,065}$

Exprimer la cote $18^{+0.1}_{-0.3}$ telle que 1) |ES| = |EI|; 2) ES = 0; 3) EI = 0


S. Soubielle 7

Tolérancement dimensionnel I

ME-101 / ME-106 - Construction Mécanique I

Terminologie et notation (3/3)

- Exemple de tolérancement dimensionnel d'un pièce
 - Intervalle de tolérance explicite affecté à chaque cote
 - → Surcharge le dessin et nuit à sa lisibilité
 - → Ne permet pas d'identifier rapidement les tolérances les plus exigeantes
 - Tolérances exigeantes ou pas ?
 - → En vert : tolérances peu exigeantes, i.e. pouvant être facilement satisfaites avec machine de précision standard et paramètres de coupe plus grossiers
 - → En rouge : tolérances les plus exigeantes, i.e. nécessitant l'utilisation d'une machine plus précise et/ou de paramètres de coupe plus fins

Tolérances générales ISO-2768 (1/3)

Principe

- Remplacer l'écriture explicite de l'intervalle de tolérances pour chaque cote par une « classe de tolérance générale »
 - → Classe de tolérance valable pour la pièce complète
 - → Destinée aux tolérances peu exigeantes
 - → Intervalles de tolérance explicites conservés si exigeants
- Objectif : alléger le dessin pour mettre en évidence les tolérances les plus exigeantes

Valeur de l'intervalle de tolérances en tol. gén. ?

- Déterminée pour chaque cote
- Fonction de...
 La valeur de la cote nominale
 - ... La classe de tolérance générale choisie

S. Soubielle 9

Tolérancement dimensionnel I

ME-101 / ME-106 - Construction Mécanique I

Tolérances générales ISO-2768 (2/3)

Classes de tolérances générales à choix

- Fine (« fine ») → ISO 2768-f

Moyennes (« medium »)→ ISO 2768-m

Grossières (« coarse »)→ ISO 2768-c

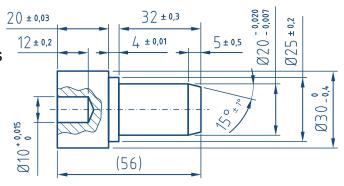
Très grossière (« very coarse ») → ISO 2768-v

• Propriétés de l'intervalle de tolérances en tol. gén.

- Centré sur la cote nominale
- La largeur de l'intervalle augmente avec la cote nominale
- Valeurs numériques définie dans trois tableaux, selon que :
 - → Dimensions linéaires
 - → Dimensions angulaires
 - → Rayons de congé et largeur de chanfrein

Tolérances générales ISO-2768 (3/3)

Intervalles de tolérances si dimension linéaire


© Extrait de Normes 2022, p. 153,

Classe de tolérance	Dimension nominale 1)								
	≥ 0,5 3	> 3 6	> 6 30	> 30 120	> 120 400	> 400 1000	> 1000 2000	> 2000 4000	
	Ecarts								
f (fine) ²)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,3	± 0,5	-	
m (moyenne)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	
c (grossière)	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	± 3	± 4	
v (très grossière)	-	± 0,5	± 1	± 1,5	± 2,5	± 4	± 6	± 8	

Exercice d'application

Le plan spécifie les tolérances générales selon ISO 2768-m. Supprimer les intervalles de tolérances redondants.

S. Soubielle 11

Tolérancement dimensionnel I

ME-101 / ME-106 - Construction Mécanique I

Références normatives principales

- ISO 129-1 Documentation technique de produit Représentation des dimensions et tolérances Partie 1 : Principes généraux
- ISO/DIS 129-2 Documentation technique de produit Indication des cotes et tolérances Partie 2: Cotation dans le domaine de la construction mécanique
- ISO 2768-1 Tolérances générales Partie 1: Tolérances pour dimensions linéaires et angulaires non affectées de tolérances individuelles
- ISO 80000-3 Grandeurs et unités Partie 3: Espace et temps